Determine the converse, inverse, and contrapositive of the conditional statements. Indicate whether each statement is true or false.

1. Conditional Statement: If two lines are parallel, then their same side interior angles are supplementary.

Converse:______T/F

Inverse:

Contrapositive: T/F

Biconditional (if possible. If not, explain)_____

Which is the contrapositive of the statement "If a number is a natural number, then it is an integer." ?

- **A.** If a number is an integer, then it is a natural number.
- **B.** If a number is not a natural number, then it is not an integer.
- **C.** If a number is not an integer, then it is not a natural number.
- **D.** If a number is not a natural number, then it is an integer.

Statement A: "If it rains, then the softball game will be canceled."

Statement B: "If it does not rain, then the softball game will not be canceled."

Statement B is the –

- A. Inverse
- C. Contrapositive
- B. Converse
- D. Biconditional

Which statement is true?

- **A.** The diagonals of a rhombus are congruent and 10 is a prime number.
- **B.** The diagonals of a rhombus are congruent or 10 is a prime number.
- **C.** The diagonals of a rhombus are not congruent and 10 is not a prime number.
- **D.** The diagonals of a rhombus are congruent and 10 is not a prime number.

Statement X: "If two circles are congruent, then their diameters are congruent."

Statement Y: "If the diameters of two circles are congruent, then the circles are congruent."

Statement Y is the –

- A. Inverse
- C. Contrapositive
- B. Converse
- D. Biconditional

Identify the property that justifies each statement.

2.If
$$\angle ABC \cong \angle DEF$$
, then $\angle DEF \cong \angle ABC$.

3.
$$\angle 1 \cong \angle 2$$
 and $\angle 2 \cong \angle 3$, so $\angle 1 \cong \angle 3$.

4. If
$$FG = HJ$$
, then $HJ = FG$.

5.
$$\overline{WX} \cong \overline{WX}$$

Write a justification for each step.

6.
$$CE = CD + DE$$

$$6x = 8 + (3x + 7)$$

$$6x = 15 + 3x$$

$$3x = 15$$

$$x = 5$$

7.
$$m\angle PQR = m\angle PQS + m\angle SQR$$

$$90^{\circ} = 2x^{\circ} + (4x - 12)^{\circ}$$

$$90 = 6x - 12$$

$$102 = 6x$$

$$17 = x$$

Find each angle measure.

8. m*∠ABC* _____

9. m∠*DEF*_____

Use the figure for Exercises 15-18. Tell whether lines m and n must be parallel from the given information. If they are, state your reasoning. (Hint: The angle measures may change for each exercise, and the figure is for reference only.)

10. ∠7 ≅ ∠3

11.
$$m \angle 3 = (15x + 22)^\circ$$
, $m \angle 1 = (19x - 10)^\circ$, $x = 8$

12. ∠7 ≅ ∠6

13.
$$m \angle 8 = (6x - 1)^\circ$$
, $m \angle 4 = (5x + 3)^\circ$, $x = 9$

14. In the diagram of the gate, the horizontal bars are parallel and the vertical bars are parallel. Find *x* and *y*.

15. A bedroom has sloping ceilings as shown. Marcel is hanging a shelf below a rafter. If $m \angle 1 = (8x - 1)^\circ$, $m \angle 2 = (6x + 7)^\circ$, and x = 4, show that the shelf is parallel to the rafter above it.

16. For two parallel lines and a transversal, m∠1 = 83°. For which pair of angle measures is the sum the least

- A) ∠1 and corresponding angle
- B) ∠1 and a same-side interior angle
- C) ∠1 and its supplement
- D) ∠1 and its complement

Choose the best answer.

17. In the bench, $m\angle EFG = (4n + 16)^{\circ}$, $m\angle FJL = (3n + 40)^{\circ}$, $m\angle GKL = (3n + 22)^{\circ}$, and n = 24. Which is a true statement?

B) $\overline{FG} \parallel \overline{HK}$ by the Converse of the Alt. Int. \angle s Thm.

C) $\overline{EJ} || \overline{GK}$ by the Converse of the Corr. \angle s Post.

D) $\overline{EJ} || \overline{GK}$ by the Converse of the Alt. Int. \angle s Thm.

18. Complete the following two-column proof (Number of steps will vary)

Given: $\angle 1 \cong \angle 2$, $\angle 3 \cong \angle 1$

Prove: $\overline{XY} \parallel \overline{WV}$

Statements	Reasons

19. Complete the following two-column proof

Given: $\overrightarrow{AB} \perp \overrightarrow{BC}$, $m \angle 1 + m \angle 2 = 180^{\circ}$

Prove: $\overrightarrow{BC} \perp \overrightarrow{CD}$

Statements	Reasons
1. $\overrightarrow{AB} \perp \overrightarrow{BC}$	1. Given
2. <i>m</i> ∠1 + <i>m</i> ∠2 = 180°	2.
3.	3. Def of Supplementary
4.	4. Converse of Same Side Int. ∠'s Theorem
5.	5.