Directions: Solve each problem.

1) In the given figures, explain how transformation T_{1} is different from transformation T_{2}.

2) In the image below, explain 2 different ways to map Image 1 to Image 2 using only one transformation.

Directions: Draw the image of each figure using the given transformation.
3) Given the rule $(x, y) \rightarrow$ ' $(x-3, y+1)$

4) Reflect across the x-axis.

Directions: Describe the sequence of transformations that can be used to map ABCD to PQRS.
5)

6)

Direction: Describe every transformation that can map the image onto itself. (The pre-image maps onto the image using exactly one transformation.)
7)

8)

Directions: Select the best answer.

9) A segment has vertices at $A(3,5)$ and $B(2,-1)$. What are the coordinates of B^{\prime} if the segment has been reflected overy $=-2$?
A. $(2,-3)$
B. $(3,-1)$
C. $(2,5)$
D. $(1,5)$
10) A triangle has vertices at $A(-2,2), B(-1,2)$ and $C(-1,4)$. Which transformation would produce an image with vertices $A^{\prime}(2,2), B^{\prime}(1,2)$ and $C^{\prime}(1,4)$?
A. Reflection over $y=0$
C. Rotation $90^{\circ} \mathrm{CW}$ about the origin
B. Rotation $180^{\circ} \mathrm{CCW}$ about the origin
D. Reflection over the y-axis
11) A triangle has vertices at $A(-2,2), B(-1,2)$ and $C(-1,4)$. Which transformation would produce an image with vertices $A^{\prime}(-6,2), B^{\prime}(-3,2)$ and $C^{\prime}(-3,4)$?
A. Dilation by a scale factor of 3
C. Vertical Stretch by 3
B. Horizontal Stretch by 3
D. Translation left 4 units
12) A segment has vertices at $G(6,7)$ and $H(3,2)$. Which transformation would produce an image with vertices $\mathbf{G}^{\prime}(-6,-7)$ and $H^{\prime}(-3,-2)$.
A. 90° CCW rotation about the origin
C. $270^{\circ} \mathrm{CCW}$ rotation about the origin
B. Reflection across $y=-x$
D. $180^{\circ} \mathrm{CW}$ rotation about the origin
13) A regular pentagon is centered about the origin and has a vertex at $(0,4)$. Which transformation maps the pentagon to itself?
A. a reflection across line m
B. a reflection across the x-axis
C. a clockwise rotation of 100° about the origin
D. a clockwise rotation of 144° about the origin

14) Given the figure, which transformation maps the parallelogram to itself?
A. a reflection across the line $x=2$
B. a reflection across the line $y=2$
C. a rotation of 180° about the point $(2,2)$
D. a rotation of 180° about the origin

15) Which sequence of transformations maps $\triangle A B C$ to $\triangle R S T$?
A. Reflect $\triangle A B C$ across the line $x=-1$.

Then, translate the result 1 unit down.
B. Reflect $\triangle A B C$ across the line $x=-1$.

Then translate the result 5 units down.
C. Translate $\triangle A B C 6$ units to the right.

Then, rotate the result 90° clockwise about the point (1, 1).

D. Translate $\triangle A B C 6$ units to the right. Then, rotate the result 90° counterclockwise about the point $(1,1)$.

