Find the measure of the given arc or chord.

1. mBC

2. mLM

3. QS

4. mAC

5. mPQR

6. mKLM

Find the value of x.

7.

8.

9.

10.

11.

12.

13. Error Analysis Explain what is wrong with the diagram of $\bigcirc X$.

14. Proof Copy and complete the proof.

GIVEN: \overline{AC} is a diameter of $\bigcirc F$. $\overline{AC} \perp \overline{BD}$

PROVE: $\widehat{AD} \cong \widehat{AB}$

Statements

1. \overline{AC} is a diameter of $\bigcirc F$. $\overline{AC} \perp \overline{BD}$

- 2. _?_
- 3. $\overline{DE} \cong \overline{BE}$
- 4. $\overline{AE} \cong \overline{AE}$
- **5.** $\triangle AED \cong \triangle AEB$
- 6. _?_
- 7. $\widehat{AD} \cong \widehat{AR}$

1. _?_

2. All right angles are congruent.

- 3. ?
- 4. ?
- 5. ?

6. Corresponding parts of congruent triangles are congruent.

7. ?

GIVEN: \overrightarrow{PQ} is a diameter of $\bigcirc U$. $\widehat{PT} \cong \widehat{QS}$

PROVE: $\triangle PUT \cong \triangle QUS$

Statements

1. \overline{PQ} is a diameter of $\bigcirc U$. $\widehat{PT} \cong \widehat{QS}$

- 2. _?_
- 3. $\overline{UP} \cong \overline{UO} \cong \overline{UT} \cong \overline{US}$
- **4.** $\triangle PUT \cong \triangle OUS$

Reasons

- 1. 2
- 2. Theorem 6.5
- 3. ?
- 1 2
- 16. Multiple Representations Briefly explain what other congruence postulate you could use to prove that $\triangle PUT \cong \triangle QUS$ in Exercise 15.
- 17. Reasoning Plot noncollinear points X, Y, and Z on a piece of paper. Use \overline{XY} and \overline{XZ} to construct perpendicular bisectors to locate the point that is equidistant to each point. With the same diagram, use \overline{XY} and \overline{YZ} to construct perpendicular bisectors to locate the point that is equidistant to each point. Are the two points the same? Would you get the same result if you used \overline{XZ} and \overline{YZ} ? Explain.