Date:	Period:	

Angle of Elevation:

Person on the ground looks up at an object

Angle of Depression: Person looks down at an object

Why are the two angles congruent?

Transversal and parallel lines (alternate interior angles)

Angle of Elevation and Angle of Depression will be the same,

Example 1:

A person on a boat on the water spots a sunken treasure that is 200 feet below the water. He jumps out and swims directly to the treasure at an angle of 20°. How far will the diver have to swim to get to the

$$x.sin20 = \frac{200}{x} - x$$

$$= \frac{200}{5.0.20}$$

$$= 585 ft$$

Example 2:

A man standing on a tower spots a fire that is 50 feet from his line of sight at the top of the tower. From the fire, there is an angle of 30° to the top of the tower. How far is the fire from the base of the tower?

$$\cos 30 = 50$$

 $50. \cos 30 = X$
 $43.30 = X$

Example 3: An airplane flying 3500 ft above ground begins a 2° descent to land at an airport. How many miles from the airport is the airplane when it starts its descent?

$$5,280 \text{ ftinamile}$$

$$5,280 \text{ ftinamile}$$

$$5 = \frac{3500}{x}$$

$$x = \frac{3500}{5 \text{ in } 2^{\circ}}$$

$$= 100,288 \text{ ft}$$

$$= 19 \text{ miles}$$

Example 4: A surveyor stands 200 ft from a building to measure its height with a 5-ft tall theodolite. The angle of elevation to the top of the building is 35°. How tall is the building?

$$tan35 = \frac{x}{200}$$

$$x = 200 \cdot tan35$$

$$x = 140 ft$$

$$t = 5$$

$$145 ft$$