
Directions: Fill in the blanks with the justifications and steps listed to complete the two-column proof. Use this list to complete the proof.

1) Given: $\angle 1$ and $\angle 2$ are straight angles.

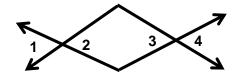
Prove: ∠1 ≅ ∠2

Statements	Reasons
1.	1. Given
2. m∠1 = 180°, m∠2 = 180°	2.
3. m∠1 = m∠2	3. Subst. Prop. of =
4.	4. Def. of ≅ ∠₅

2) Given: $\angle 1$ and $\angle 2$ form a linear pair, and

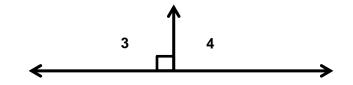
 $\angle 3$ and $\angle 4$ form a linear pair.

Prove: $m \angle 1 + m \angle 2 + m \angle 3 + m \angle 4 = 360^{\circ}$


Statements	Reasons
1. ∠1 and ∠2 form a linear pair, and ∠3 and ∠4 form a linear pair.	1.
2. ∠1 and ∠2 are supplementary, and ∠3 and ∠4 are supplementary.	2.
3.	3. Def. of supp. ∠s
4. m∠1 + m∠2 + m∠3 + m∠4 = 360°	4.

3) Given: $\overline{AB} \cong \overline{BC}$

AB = 5


Prove: BC = 5

4) Given: ∠1 ≅ ∠4 Prove: ∠2 ≅ ∠3

Statements	Reasons
1.	1. Given
2.	2. Vertical 🕭 Theorem
3.	3.
4.	4.

5) Given: ∠3 is a right angle. Prove: ∠4 is a right angle.

Statements	Reasons
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.
6.	6.
7.	7.

6) Given: $\overline{AC} \cong \overline{BD}$ Prove: $\overline{AB} \cong \overline{CD}$

