right angle

an angle whose measure is exactly 90°

B

Vertical Angles

two angles that are opposite of each other and share a common vertex

two angles whose sum is equal to 90°

two angles whose sum is equal to 180°

 $m \angle 1 + m \angle 2 = 180^{\circ}$

alternate interior angles

angles that are on opposite sides of the transversal and are in

between the other two lines

symbolic notation: NONE

If $a \parallel b$, then $\angle 1 \cong \angle 2$

*When the two other lines are parallel,

these angles are congruent.

same-side interior angles

angles that are on the same side of the transversal and are between the other two lines

symbolic notation: NONE

If $a \parallel b$, then $m \angle 1 + m \angle 2 = 180^{\circ}$

corresponding angles

angles that have the same relative position in geometric figures

symbolic notation: NONE

If $a \parallel b$, then $\angle 1 \cong \angle 2$

Conditional Statement

A statement, represented by p and q, in which p is the hypothesis and q is the conclusion: If p, then q.

Hypothesis If <u>two angles are supplementary</u>, then <u>the sum of the angles equals 180°</u>.

symbolic notation:

p→q

Counterexample

An example that disproves a statement

Conditional Statement:

If $\angle A$ and $\angle B$ are complementary, then $m \angle A = 60^{\circ}$ and $m \angle B = 30^{\circ}$.

Counterexample:

 $m \angle A$ could equal 20° and $m \angle B$ could equal 70°

symbolic notation: None

Converse Statement

A conditional statement in which the hypothesis and conclusion are switched.

symbolic notation:

Original Conditional Statement: $q \rightarrow p$ If an angle is a vertical angle, then the measure of the angle equals 90°. Converse:

If the measure of an angle equals 90°, then the angle is a vertical angle.

Inverse Statement

A conditional statement in which the hypothesis and conclusion are negated.

To make a statement opposite in meaning. Symbolic notation:

Original Conditional Statement: $\sim p \rightarrow \sim q$

If two angles are complementary, then their sum equals 90°.

Inverse:

If two angles are NOT complementary, then their sum is NOT equal to 90°.

Contrapositive Statement

A conditional statement in which the hypothesis and conclusion are negated and switched.

symbolic notation:

Original Conditional Statement: $^{\circ}q \rightarrow ^{\circ}p$ If two angles are supplementary, then their sum equals 180°. Contrapositive:

If two angles do NOT have a sum of 180°, then the angles are NOT supplementary.

Triangle Sum Theorem

The sum of three interior angles of a triangle equals 180^o

B

5 + 12 > 13 so AC + BC > AB

Exterior Angles Theorem

The exterior angle of a triangle is equal to the sum of the two remote interior angles

Linear Pair Theorem

If two angles form a linear pair, then they are supplementary.

symbolic notation: NONE

 $\angle 1$ and $\angle 2$ form a linear pair, so $\angle 1$ and $\angle 2$ are supplementary

Segment Addition Postulate

If collinear Point B lies between Points A and C, then AB + BC = AC.

Angle Addition Postulate

If Point D lies in the interior of $\angle ABC$, then $m \angle ABD + m \angle DBC = m \angle ABC$.

symbolic notation: NONE

 $m \angle ABD + m \angle DBC = m \angle ABC$

Points that lie on the same line

symbolic notation: NONE A B C Points A, B, and C are collinear.

Midpoint

The exact middle point on a line segment.

symbolic notation: NONE

B is the midpoint of \overline{AC} because $\overline{AB} \cong \overline{BC}$.

To cut into two equal parts

Hint: If you bisect a segment, you get 2 congruent SEGMENTS. If you bisect an angle, you get 2 congruent ANGLES.

Perpendicular Bisector

A line that divides a segment into two congruent segments and forms a right angle at the intersection.

If two segments are congruent, then the measures of the segments are the same.

If two angles are congruent, then the measures of the angles are the same.

Properties

Property	Definition	Example	Symbolic Notation
Reflexive Property of Equality	A value is equal to itself.	5 = 5	$m \angle A = m \angle A$ AB = AB or AB = BA
Symmetric Property of	If a = b, then b = a.	If x = 2, then 2 = x.	m∠A = x ^o so
Equality		AB = 8 so 8 = AB	x ^o = m∠A
Transitive Property of	If a = b and b = c,	If x = y and y = 2,	If AB = CD and CD = EF, then
Equality	then a = c.	then x = 2.	AB = EF.
Substitution Property of Equality	If a variable is assigned a value, then the value can replace the variable.	Given: x + y x = 4 & y = 2 Conclusion: 4 + 2	If AB = 5 and AB + 4, then 5 + 4.
Distributive Property of	If a(b + c), then ab + ac.	4(x-2) = 4x - 8	a(b + c) = ab + bc
Equality	If a(b – c), then ab – ac.		a(b - c) = ab - ac

parallel lines

Parallel lines have the same slope but different

а

• •

y-intercepts.

Parallel lines lie in the same plane and do not intersect. symbolic notation:

So, a || b

