right angle

an angle whose measure is exactly 90°

Adjacent Angles

two angles that share a common ray

A

Vertical Angles

symbolic notation
$\angle A C B$ and $\angle D C E$ are vertical angles

two angles that are opposite of each other and share a common vertex

Complementary Angles

two angles whose sum is equal to 90°

Supplementary Angles,

two angles whose sum is equal to 180°

$$
m \angle 1+m \angle 2=180^{\circ}
$$

Linear Pair

symbolic notation
None

$\angle A B C$ and $\angle C B D$ form a linear pair

A pair of adjacent angles whose non-common side form opposite rays
angles that are on opposite sides of the transversal and are in between the other two lines

symbolic notation:

NONE

If $a \| b$, then $\angle 1 \cong \angle 2$
*When the two other lines are parallel, these angles are congruent.

alternate exterior angles

angles that are on opposite sides of the transversal and are on the outside of the other two lines

symbolic notation: NONE
*When the two other liners are parallel, these angles are congruent.

same-side interior angles

angles that are on the same side of the transversal and are between the other two lines
symbolic notation: NONE

If $a \| b$, then $m \angle 1+m \angle 2=180^{\circ}$

corresponding angles

angles that have the same relative position in geometric figures

If $a \| b$, then
symbolic notation:

$$
\angle 1 \cong \angle 2
$$

Conditional Statement

A statement, represented by p and q, in which p is the hypothesis and q is the conclusion: If p, then q.

Hypothesis
If two angles are supplementary, then the sum of the angles equals 180°.

symbolic notation:

$$
p \rightarrow q
$$

Counterexample

An example that disproves a statement

Conditional Statement:
If $\angle A$ and $\angle B$ are complementary, then $m \angle A=$ 60° and $\mathrm{m} \angle \mathrm{B}=30^{\circ}$.
Counterexample:

$m \angle A$ could equal 20° and $m \angle B$ could equal 70°

 symbolic notation: None
Converse Statement

A conditional statement in which the hypothesis and conclusion are switched.

symbolic notation:

Original Conditional Statement: $q \rightarrow p$
If an angle is a vertical angle, then the measure of the angle equals 90°.
Converse:
If the measure of an angle equals 90°, then the angle is a vertical angle.

Inverse Statement

A conditional statement in which the hypothesis and conclusion are negated.

To make a statement opposite in meaning.
Original Conditional Statement: symbolic notation:

If two angles are complementary, then their sum equals 90°.
Inverse:
If two angles are NOT complementary, then their sum is NOT equal to 90°.

Contrapositive Statement

A conditional statement in which the hypothesis and conclusion are negated and switched.
symbolic notation:
Original Conditional Statement:

$$
\sim q \rightarrow \sim p
$$

If two angles are supplementary, then their sum

$$
\text { equals } 180^{\circ} .
$$

Contrapositive:

$$
\begin{aligned}
& \text { If two angles do NOT have a sum of } 180^{\circ} \text {, then } \\
& \text { the angles are NOT supplementary. }
\end{aligned}
$$

Triangle Sum Theorem

The sum of three interior angles of a triangle equals 180°

Triangle Inequality Theorem

The sum of any two lengths of a triangle is greater than the third side
symbolic notation:
NONE

$5+12>13$ so $A C+B C>A B$

Exterior Angles Theorem

The exterior angle of a triangle is equal to the sum of the two remote interior angles
symbolic notation:
$m \angle A+m \angle B=m \angle C$

$22^{\circ}+84^{\circ}=106^{\circ}$ so $m \angle A B D=106^{\circ}$

Linear Pair Theorem

If two angles form a linear pair, then they are supplementary.

symbolic notation:
NONE

Segment Addition Postulate

If collinear Point B lies between Points A and C, then $A B+B C=A C$.
symbolic notation: NONE

$$
A B+B C=A C
$$

Angle Addition Postulate

If Point D lies in the interior of $\angle A B C$, then $m \angle A B D+m \angle D B C=m \angle A B C$.
symbolic notation: NONE

$m \angle A B D+m \angle D B C=m \angle A B C$

Collinear

Points that lie on the same line

symbolic notation: NONE

Points A, B, and C are collinear.

Midpoint

The exact middle point on a line segment.

symbolic notation:
NONE

B is the midpoint of $\overline{A C}$ because $\overline{A B} \cong \overline{B C}$.

Bisect

To cut into two equal parts

Hint: If you bisect a segment, you get 2 congruent SEGMENTS. If you bisect an angle, you get $\mathbf{2}$ congruent ANGLES.
symbolic notation: NONE

$\overrightarrow{B D}$ bisects $\angle A B C$ because $\angle A B D \cong \angle D B C$

Perpendicular Bisector

A line that divides a segment into two congruent segments and forms a right angle at the intersection.
symbolic notation: NONE

$\overline{A B}$ is a perpendicular bisector of $\overline{C E}$.

Congruent Segments

If two segments are congruent, then the measures of the segments are the same.

Congruent Angles

If two angles are congruent, then the measures of the angles are the same.

1

Properties

Property	Definition	Example	Symbolic Notation
Reflexive Property of Equality	A value is equal to itself.	$5=5$	$\begin{gathered} m \angle A=m \angle A \\ A B=A B \text { or } A B=B A \end{gathered}$
Symmetric Property of Equality	If $\mathrm{a}=\mathrm{b}$, then $\mathrm{b}=\mathrm{a}$.	$\begin{aligned} & \text { If } x=2 \text {, then } 2=x \text {. } \\ & A B=8 \text { so } 8=A B \end{aligned}$	$\begin{gathered} m \angle A=x^{0} \text { so } \\ x^{0}=m \angle A \end{gathered}$
Transitive Property of Equality	If $\mathrm{a}=\mathrm{b}$ and $\mathrm{b}=\mathrm{c}$, then $\mathrm{a}=\mathrm{c}$.	If $x=y$ and $y=2$, then $\mathrm{x}=2$.	If $A B=C D$ and $C D=E F$, then $A B=E F$.
Substitution Property of Equality	If a variable is assigned a value, then the value can replace the variable.	$\begin{aligned} & \text { Given: } x+y \\ & x=4 \& y=2 \end{aligned}$ Conclusion: $4+2$	If $A B=5$ and $A B+4$, then 5 +4 .
Distributive Property of Equality	If $a(b+c)$, then $a b+a c$. If $a(b-c)$, then $a b-a c$.	$4(x-2)=4 x-8$	$\begin{aligned} & a(b+c)=a b+b c \\ & a(b-c)=a b-a c \end{aligned}$

parallel lines

Parallel lines lie in the same plane and do not intersect.
symbolic notation:
||

perpendicular lines

Perpendicular lines intersect to form right angles.

Perpendicular lines have negative reciprocal slopes.
symbolic notation:
\perp

