Directions: Write the rule of the transformation.

1) A triangle $A B C$ is rotated 360 degrees $C W$.
2) A line segment DE is rotated 180 degrees.
3) A square $M N O P$ is rotated 270 degrees $C W$.
4) A line segment $X Y$ is rotated 90 degrees $C W$.

Directions: Describe the transformation. (This is a mixed review).
5) $(x, y) \rightarrow{ }^{\prime}(-y, x)$
6) $(x, y) \rightarrow{ }^{\prime}(y,-x)$
7) $(x, y) \rightarrow{ }^{\prime}(-x,-y)$
8) $(x, y) \rightarrow{ }^{\prime}(x+2, y)$
9) $(x, y) \rightarrow^{\prime}(-y,-x)$
*10) $(x, y) \rightarrow$ " $(-y, x+1)$

Directions: Complete the transformation of the new image. If the rule was provide, describe the transformation. If the transformation was described, write the rule.
11) $A B(x, y) \rightarrow A^{\prime} B^{\prime}(y,-x)$

14) Rotate FGH by $270^{\circ} \mathrm{CCW}$.

15) Rotate ABCD by $90^{\circ} \mathrm{CCW}$.

Directions: Find the missing point using the given information.

17) $A(8,4)$

Rule: $(x, y) \rightarrow$ ' $(-x,-y)$
Find A^{\prime}.
19) $C^{\prime}(0,4)$

Rule: $(x, y) \rightarrow{ }^{\prime}(y,-x)$
Find C.
21) Image: $(5.4,11.2)$

Description: Rotation of $270^{\circ} \mathrm{CCW}$.
Find the pre-image coordinate.
18) $B^{\prime}(-6,-1)$

Description: Rotation of $270^{\circ} \mathrm{CW}$.
Find B.
20) Pre-Image: $(-2,6)$

Description: Rotation of $90^{\circ} \mathrm{CCW}$.
Find the image coordinate.
22) Pre-Image $\left(-\frac{1}{3},-4 \frac{5}{8}\right)$

Rule: $(x, y) \rightarrow{ }^{\prime}(-y, x)$
Find the image coordinate.

Directions: Solve each problem.

23) A wheel has its center located at the origin of a graph. A nail is found on the bicycle wheel in a location of $\mathrm{W}(-25,3)$. After the tire is rotated $180^{\circ} \mathrm{CW}$, at what coordinate is this nail?
24) $(-\mathrm{h}, \mathrm{k})$ is rotated $90^{\circ} \mathrm{CCW}$. What is the coordinate of its image?
25) The long hand of this clock is rotated $270^{\circ} \mathrm{CW}$. What is the time after this rotation?

26) After a rotation about the origin, $M(4,12)$ has an image of $M^{\prime}(12,-4)$. What is R^{\prime} if R is located at $(-1,3)$ and follows this same rotation?
