Directions: Write the rule of the reflection.

1) A line segment is reflected over the y-axis. \quad 2) A triangle is reflected over the x-axis.

Directions: Describe the transformation. (This is a mixed review $\&$ includes sequences of transformations).
3) $(x, y) \rightarrow{ }^{\prime}(x,-y)$
4) $(x, y) \rightarrow{ }^{\prime}(x+2, y)$
5) $(x, y) \rightarrow$ ' $(-x, y)$
6) $(x, y) \rightarrow{ }^{\prime}(x-4, y)$
*7) $(x, y) \rightarrow$ " $(-x, y+1)$
*8) $(x, y) \rightarrow$ " $(x+3,-y-5)$

Directions: Complete the transformation of the new image. If the rule was provided, describe the transformation. If the transformation was described, write the rule.
9) $A B(x, y) \rightarrow A^{\prime} B^{\prime}(x,-y)$

10) $C D E(x, y) \rightarrow C^{\prime} D^{\prime} E^{\prime}(x,-y)$

11) $J K(x, y) \rightarrow J^{\prime} K^{\prime}(-x, y-1)$

12) Reflect over $\mathrm{y}=0$.

*13) Reflect over the x-axis. Then, translate left 4 units.

14) Reflect over the y-axis.

Directions: Find the missing point using the given information.

15) If the result of $(x, y) \rightarrow$ ' $(x-1, y+2)$ is $A^{\prime}(-5,2)$, what is the pre-image, or A ?
16) If $B(4,-2)$ is applied to $(x, y) \rightarrow{ }^{\prime}(-x, y)$, what is the coordinate that represents the image?
17) The pre-image $(-3,-9)$ is reflected using the rule $(x, y) \rightarrow{ }^{\prime}(x,-y)$. What is the image coordinate?
18) If the result of $(x, y) \rightarrow$ ' $(-x, y)$ is $B^{\prime}(-6,-1)$, what is the pre-image, or B ?

Directions: Solve each problem.

19) $C(3,-2)$ and $D(-1,0)$ transforms to $C^{\prime}(-3,-2)$ and $D^{\prime}(1,0)$. What transformation has occurred?
20) $F(a, b)$ is reflected over the x-axis. If $a<0$ an $b>0$, in what quadrant with $F^{\prime \prime}$ be located?
21) The function, $y=-2^{x}$, the passes through $H(5,-32)$. If the graph is reflected over the y-axis, what are the coordinates of the image of H ?
22) In the graph below, the pre-image is first reflected so that A^{\prime} is located at $(2,2)$. The new image is then translated to $A^{\prime \prime}(2,-2)$. At what ordered pair would $B^{\prime \prime}$ be found following this same sequence of transformations?

